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Trial analysis (in brief)
• Placebo response can be produced 

from ups and down of seizure 
frequency alone 

• Placebo outcome can be 
anticipated by trial design 

• Computational models based on 
seizure data can reproduce trial 
results 

• Models can predict trial efficiency 
based on patient diaries BEFORE 
the drug is given

p < 0.05).This result is consistent with expectation, given that
natural variability should be temporally reversible.

Of the 22,360 patients initially exported for SeizureTracker,
13,488 patients were retained after initial exclusion criteria were
applied. Of the 1,210,036 seizures in the database, 1,112,343
seizures were retained after exclusions were applied. For
SeizureTracker, 1552 patients were eligible in the forward
simulation while 1007 were eligible for the reverse. For Neuro-
Vista, 11 of the original 15 patients were used in the forward and
reverse simulation. For the TMS study, all 12 “sham” patients from
the TMS study were included in the forward analysis while 10 were
included in the reverse analysis.

Fig. 3A summarizes the RR50 responses. t values were:
Neurovista 4.0 (p = 0.002), TMS 2.6 (p = 0.044), SeizureTracker
0.6 (p < 0.001). Because t > 0 and p < 0.05, all 3 datasets
demonstrated statistically significant evidence of reversibility.
All three were compatible with natural variability being the largest
influence (similar to group C in Fig. 2).

Fig. 3B summarizes the MPC responses. NeuroVista and
SeizureTracker both demonstrated large positive MPC values in
both forward and reverse computations, while the TMS study
showed a positive “forward” MPC and a negative “reverse” MPC.

When using the “clinical” seizures alone from the NeuroVista
data, the RR50 values were 14.3% forward, and 33.3% reverse. The
MPC values were 24.2% forward, and 38.1% reverse. The forward
computation used 7 patients, while the reverse used 9. t was 3.7
with p = 0.022. As with the complete NeuroVista dataset, t > 0,
confirming statistically significant temporal reversibility.

4. Discussion

This study used ‘Big Data’ and formal clinical trial data to
present evidence that natural variability may account for the
majority of the placebo response in epilepsy trials. Indeed, the
RR50 in both forward and reverse (Fig. 3A) were similar to placebo
arm values seen in typical clinical trials [8]. This suggests that RR50
may be less optimal as a trial outcome metric, because the natural
variability (which is always present) is not adjusted for (Fig. 2).
Given that in two of the three cases, positive MPC values were
obtained using the “reverse” calculation, it may be worth
considering alternatives to MPC as well.

Our analysis highlights the connection between inclusion
criteria and placebo response. In the reverse analysis, MPC appears
positive and similar to the forward time analysis only if eligibility
criteria are re-applied. The decreased number of patients in the
reverse direction suggests that some patients had a significant
decrease in average seizure counts in the forward direction. The
reverse eligibility criteria enforced a form of regression-to-the-
mean influence by selecting “sicker” moments in some patients.
Selection of less strict eligibility criteria may allow more patients in
their “usual state” and thus avoid excessive regression-to-the-
mean influence. By design, the regression-to-the-mean effects
seen here were caused by natural variability. This is in contradis-
tinction to the effect of acutely ill patients enrolling in trials due to
higher than average seizure rates – such a circumstance would not
be easily reversible in this analysis.

Fig. 3. The forward and reverse calculations. A: the 50% responder rate (RR50) is shown for each dataset. In order for t to be positive, the reverse RR50 must be >50% of the
forward value. This is true in all 3 cases, and each reached statistical signficance (p < 0.05). B: The median% change (MPC) is shown for each dataset. In NeuroVista and
SeizureTracker, MPC values are similar regardless of direction of temporal flow. In the TMS case, the MPC values show opposite signs.
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To better summarize the outcomes of the many simula-
tions, linear regression models were developed (Table 1).
For the RR50 of the placebo arm (RR50placebo), the
terms B, T and the B:T interaction were sufficient without
requiring drop or N. When min was considered for
RR50placebo, it was useful alone and as an interaction
with B. The MPC for placebo (MPCplacebo) required
only B, T and the B:T interaction terms, without requir-
ing N, or drop.

The three models for RR50power included either min,
drug, or dropout. Higher drug effect size increased the
RR50power. Higher values of min increased the
RR50power. All three models of RR50 included N, and it
served to increase RR50power. The relationship of B and
T to RR50power depended on if drug was included; when
not included, B and T had negative beta values, when
drug was included, B and T had positive betas. Table 2
lists all the beta values for the 3 RR50power models. The
details of these models are highlighted because of their
importance in determining the sample size for the overall
trial, as it is known that RR50 is generally of lower statis-
tical power than MPC outcomes.7 Of note, the model for
dropout did not find that the dropout rate was a signifi-
cant factor, rather it favored combinations of B, T, and N
alone.

Discussion

This study explored the complex relationship between RCT
trial parameters, statistical efficiency, expected placebo
responses, and economic consequences. Using a big data
Monte Carlo simulation approach, we explored the

parameter space for trial design including duration of base-
line and test periods, minimum monthly seizure rate
required for eligibility, number of patients needed, drop-
out, and drug effect size. We found evidence that shorter
trials can still achieve sufficient power with dramatically
lower cost. We found that the strongest predictors of pla-
cebo response were durations of baseline and test periods.
Drug effect size, but not dropout rate, had a major impact
on trial efficiency and cost. The least restrictive minimum
seizure rate was found to depend on the trial durations
selected. The close relationship between trial parameters
and expected placebo response indicates that care must be
taken in selecting parameters that lead to optimal out-
comes, depending on what factors are deemed most impor-
tant for the trial (i.e. low cost, high statistical power, etc.).
It is a widely held view that long treatment arms (such

as 3 months) are required to demonstrate efficacy of a
drug. Under the assumption that the effect size of a drug
within an individual is stable, at least in a probabilistic
fashion, we demonstrated that statistical power can be
achieved with much shorter trial durations. This means
that a drug that is truly effective can be proven to be so
in a shorter time, and ineffective drugs can be disproven
quickly as well. Conversely, if one rejects the stable effect
size assumption, then one must also conclude that a 3-
month treatment phase is also too short. Indeed, without
the stability assumption, one must test drugs for years to
be certain of ongoing effectiveness.
Prior work in modeling the consequences of different

trial parameters is consistent with our findings here, par-
ticularly that very short trials (baseline=4 weeks,
test=3 weeks) may be sufficiently powered.8 In that study,

Figure 2. Expected values of placebo RR50 and MPC. Each grid location represents the average value (RR50 or MPC) in the placebo arm of 1000

trials with identical parameters. All trials used number of patients (N) = 900, percentage of patients that drop out (dropout) = 0, and minimum

monthly seizure rate during baseline required for inclusion (min) = 4. The different grid locations represent different combinations of baseline

weeks (B) and test weeks (T) values for the trial duration. RR50 and MPC were both correlated with B and inversely correlated with T. Note that

the color scales differ in the MPC figure and the RR50 figure. The lowest values of RR50 correspond to the most negative values of MPC.
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endpoints. Fig. E1 in Appendix E shows the RR50 and MPC for the
placebo and drug arms of a single representative simulated trial.

4. Discussion

The NV Model and RCT simulations were designed without any
psychological “placebo effects”, yet they were able to reproduce typical
placebo response values. RCT simulations yielded a reduction in the
measured drug effect compared to the true drug effect, which can only
be due to natural variability acting as statistical noise in the estimation
of treatment efficacy. The difference in typical seizure frequencies be-
tween NV Model and the historical RCTs suggests that typical RCT
patients may be sicker than the general patient population, such as
those seen in clinic (Tlusta, 2008). The NV Model predicts that for any
patient given a new treatment, there is an approximately 1 in 5 chance
that the seizure frequency will be reduced by more than 50 % during
the first three months due to random fluctuations. If psychological
factors can play a role, that percentage could be even higher. This result
is relevant when judging the efficacy of any treatment (medication,
device, diet, etc.).

Although NV Model did not explicitly generate clusters, they oc-
curred nonetheless. (e.g. Fig. 4). It would be common for a patient or a
provider to attribute those weeks with high seizure counts to something
such as stress, lack of sleep, or other factors (Haut et al., 2005; Mackay
et al., 2017). However, any clustering noted in this simulation must be
an epiphenomenon and not a reflection of underlying disease states.
Further study is required to determine how often such pseudo-clusters
are misclassified as true clusters.

The main utility of NV model is its ability to generate data sets for
the purposes of testing hypotheses related to natural variability in sei-
zure counts. These include hypotheses about placebo response, trial
design, trial analysis, and issues related to seizure clustering. NV model
is capable of generating an arbitrarily large amount of realistic seizure
diaries, the size of which is limited only by available computational
resources. This makes it simpler to conduct studies which need a large
amount of seizure diaries without needing to rely on limited data sets.

4.1. Model optimization and target value selection

The optimal slope was chosen to be 0.7 according to data observed
across three patient populations (Goldenholz et al., 2018). The seizure
diaries coming from these three populations were very different: the
SeizureTracker.com population spanned a much longer length of time
than the other datasets, and had far more patients (Ferastraoaru et al.,
2018). However, the diaries suffer from many biases attributed to self-
reported data (Goldenholz et al., 2015). The HEP diaries, while physi-
cian curated, are fundamentally self-reported data from new onset
epilepsy patients (French et al., 2020). The Neurovista diaries can be
considered to be as accurate as possible given that the seizures were
confirmed by intracranial EEG data, but the population size is very
small, and only seizures at the electrodes could be detected (Cook et al.,
2013). Despite these differences and biases, the L-relationship was
consistently found across all of these datasets (Goldenholz et al., 2018).
This provides evidence of universality of the target value for the slope
across patient populations.

For the median seizure frequency, the target value of 2.7 seizures/
month was based on data from SeizureTracker.com (Ferastraoaru et al.,
2018), one of the largest available databases and is presumed to be
representative of the general epilepsy population. A strength of NV
Model is that the range of realistic seizure frequencies was derived from
this vast, diverse population.

4.2. Comparison to other previous simulations of daily seizure counts

There have been previous statistical models of daily seizure count
data: several models incorporated clusters and memory (Tharayil et al.,
2017; Trocóniz et al., 2009; Balish et al., 1991; Ahn et al., 2012;
Delattre et al., 2012; Albert, 1991), cycles (Balish et al., 1991), and
other features (e.g., linear time trends and dropout) (Hougaard et al.,
1997; Balish et al., 1991; Ahn et al., 2012; Nielsen et al., 2015; Deng
et al., 2016; Alosh, 2009). Six of these models were fitted to seizure
diaries from less than 100 patients (Balish et al., 1991; Alosh, 2009;
Albert, 2000; Thall and Vail, 1990; Molenberghs et al., 2007), 5 models
were fitted to seizure diaries from over 100 patients who were eligible
for RCT participation (Trocóniz et al., 2009; Ahn et al., 2012; Delattre
et al., 2012; Nielsen et al., 2015; Deng et al., 2016), and 1 model was
based on seizure diaries from 1526 users of SeizureTracker (Tharayil
et al., 2017).

All prior modeling studies (except one (Tharayil et al., 2017)) va-
lidated their model on the same data used to produce the model. This
practice can lead to “overfitting” and lack of generalizability (Ng,
2019). Given the numerous causes and subtypes of epilepsy (Wyllie
et al., 2020), it is important to consider the generalizability of features
beyond specific datasets. None of the prior studies address this problem.
In contrast, NV model was fit to heterogeneous datasets (Ferastraoaru
et al., 2018; Cook et al., 2013; French et al., 2020), and was validated
on 23 separate historical RCTs. Also, none of the previous models in-
corporated the L-relationship (Goldenholz et al., 2018), which persists
across diverse datasets. Therefore, the performance metrics of our study
may be more generalizable than prior work.

There are two other aspects to NV Model which make it novel and
unique compared to previous models. Firstly, the NV Model is more
parsimonious than other models, making it simpler to extend, and to
derive insights into the inner workings of the model. Secondly, usage of
NV Model is facilitated through open-source availability on Github
(Romero and Nip, 2018).

Fig. 5. Horizontal bar chart of RR50 (50 % responder rate) and MPC (median
percentage change) from 5000 simulated trials with an artificial drug effect of
20 % compared to a meta-analysis of 23 historical trials. The bars show the
mean of the trials, and the error bars show the standard deviation. This bar
chart shows the similarity between the simulated and historical RCTs, sug-
gesting that the model can make reasonable predictions about RCT outcomes.
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number of patients is known to increase the SNR of a trial.5,7,27 
A second pair of studies compared brivaracetam 50 mg/d ver-
sus placebo, reporting no significant difference in one28 and 
a significant difference in the other.29 For those studies, the 
number of patients was equal, but the baseline rates were no-
tably higher in the second trial.29 In Figure 3, it is apparent 
that higher baseline seizure rates would be expected to in-
crease SNR, making a successful trial more likely. Without 
patient-level diary data to confirm the precise position on the 
SNR maps, these comments are preliminary, but they illustrate 
the concept that framing trial success and failure in terms of 
baseline seizure characteristics of the cohort may be valuable.

4.1 | Prediction of RCT statistical power

There is an important gap in the literature when it comes to exam-
ining the statistical power of RCTs for epilepsy treatments. Many 
of the published mathematical models of statistical power in epi-
lepsy RCTs are models published by our laboratory: a Monte Carlo 
simulation6 of power under different RCT design parameters; a 
comparison of power between Zv, RR50, and MPC, which utilized 
various seizure diary datasets7; and another comparison of power 
between RR50, MPC, and TTP, which utilized artificial seizure 
diaries.5 There is at least one other study30 that discusses the statisti-
cal power of analysis of covariance (ANCOVA) as a data analysis 

F I G U R E  3  Signal-to-noise ratio (SNR) heatmaps, using monthly seizure count means (μ) for the x-axis, and monthly seizure count standard 
deviations (σ) on the y-axis. The color bar next to each heatmap indicates that red squares have positive SNRs, and blue squares have negative 
SNRs. The heatmaps are shown for A, 50% responder rate (RR50); B, median percentage change (MPC); and C, time to prerandomization (TTP). 
The black squares correspond to means and standard deviations that do not exist due to the overdispersion restriction (σ> √μ). The green curve 
displayed on each heatmap is a power-law relationship between the monthly mean and monthly standard deviation, which both natural variability 
models were designed to emulate. The RR50 heatmap utilized more patients to account for its relative statistical inefficiency. The similarity 
of the SNR between all three heatmaps suggests the existence of an SNR function independent of any endpoint

F I G U R E  4  Comparing signal-to-noise ratio (SNR) predictions from natural variability (NV) model 1 versus NV model 2. A, The combined 
histogram of 200 different patient populations (100 placebo arm, 100 drug arm) for both NV models 1 and 2, plotted in the same space as Figure 3 
(x-axis: monthly seizure count means [μ], y-axis: monthly seizure count standard deviations [σ]). This histogram shows that NV model 2 patients 
are closer to the positive SNR region due to their higher seizure frequencies. B, The average statistical power predicted by the Stat-Power models 
over 100 patient populations from NV models 1 and 2. The higher statistical powers from NV model 2 patients can be interpreted as NV model 2 
patients contributing more information to their randomized clinical trials due to their higher SNRs. 2D, two-dimensional; MPC, median percentage 
change; RR50, 50% responder rate; TTP, time to prerandomization

Romero 2020 Epilepsia
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found when the two critical phases were combined (Fig. 6). When
multidien and circadian rhythms were both anti-phase, seizures
were rare in 5 out of 14 subjects (S3, S5, S24, S30, and S33).

Discussion
Our results reveal that, in addition to well-known circadian
rhythms, IEA fluctuates with slower multidien rhythms that vary
across subjects but are relatively stable within subjects over many
years. Furthermore, seizures occur preferentially during narrow
phases of these circadian and multidien rhythms. Thus, seizures
are organized by underlying biological rhythms that operate over
multiple timescales and jointly modulate seizure risk.

Previous applications of quantitative methods to chronic
intracranial recordings have elegantly characterized distributions
of seizure durations and inter-seizure intervals5,20, established
power-law relationships linking past and future seizures6, and
identified circadian and ultradian patterns2–4. One study using an
autocorrelation method in the time-domain found cyclical pat-
terns of IEA ranging in duration from weeks to 1 month in a
limited number of subjects4. Here we took advantage of longer
recordings and frequency-domain statistical analyses designed for
the study of oscillations at any scale. Our study is distinguished by
the elucidation of multidien rhythms in most subjects, often with
greater magnitude than circadian modulation. This is remarkable
as multidien rhythms were present covertly in all-comers, even
though most did not have obvious periodicity of their epilepsy,
underscoring the value of monitoring IEA as a biomarker of

disease activity. In comparison with previous contributions4, the
key insight from our work is that, across subjects with diverse
focal epilepsies, seizure timing depends on the phase of the
multidien rhythm, explaining how seizures tend to form clusters
with long-range dependencies5,6,20. This phenomenon could only
be elucidated with long timescale recordings of IEA and seizures,
and the importance of using this wider temporal lens to view and
anticipate seizure dynamics represents a major conceptual
advance. Indeed, the time window of pre-seizure activity relevant
for seizure prediction may be on the scale of days rather than
hours as previously thought10,21. Overall, seizure occurrence was
best explained by incorporating information about circadian and
multidien rhythms. Reliable real-time seizure prediction will
likely involve a combinatorial function of multiple features of an
individual’s epilepsy, including past and present seizure char-
acteristics and short and long-term IEA trends. Multidien and
circadian rhythms may be most predictive in subjects with a low
or moderate seizure rate where phase preference is highest.

The data presented here, based on analysis of thousands of
seizures, help reconcile conflicting evidence regarding the rela-
tionship between IEA and seizures. Previous studies have repor-
ted that IEA increases, decreases, or remains unchanged before
seizures4,11,22, and IEA trends after seizures are also vari-
able11,23,24. Seizures preferentially occur during the rising phase
of multidien IEA cycles, but, in a given subject, this could coin-
cide with the peak or the trough of the circadian IEA cycle4,
perhaps explaining how shorter timescale studies, looking at
hour-to-hour changes in IEA, could draw seemingly contra-
dictory conclusions. Similarly, day-to-day changes in IEA may
not explain seizure timing as well as the phase of the underlying
slow oscillation. A major advantage of our study is that chronic
recordings were made in ambulatory subjects under natural
conditions, i.e., without tapering anticonvulsant medications,
which is typical of acute inpatient recordings and known to affect
IEA24.

Our findings challenge the concept of a direct, generalizable
relationship between IEA and seizures and favor a hypothesis that
these epilepsy phenomena covary under differential influence of
factors operating at multiple timescales. A slow permittivity
variable was recently identified in an elegant mathematical model
of epilepsy25, and our results support the existence of an uni-
dentified factor (or factors) regulating slow epileptic fluctua-
tions26, possibly through changes in brain metabolism27 or circuit
function28. Further analysis of the rise and decay kinetics of IEA
fluctuations may be informative with regard to underlying bio-
logical mechanisms. We speculate that the seemingly independent
circadian and multidien oscillators may in fact be co-modulated
by hormonal, genetic, environmental29, sleep-wake cycle30, and
behavioral factors31. Hormonal influence on seizures occurs in
catamenial epilepsy32,33, and one of the 15 female subjects had
seizures related to menstrual cycles32,33 with IEA cycling at 13
and 26 days. However, we observed similar rhythmicity in men,
so catamenial cycling cannot explain our results.

This study has limitations. Our subjects, who have medically
refractory focal epilepsy, may not be representative of all patients
with epilepsy. These subjects also received therapeutic brain sti-
mulation. We cannot exclude the possibility that stimulation
influenced the rhythms we observed, but the stability of these
rhythms despite parameter changes, including turning stimula-
tion off, strongly argues against this. Given that patient subjective
reports are notoriously inaccurate for seizure quantification34,
with systematic negative bias for certain seizure types (amnestic
and nocturnal), we focused our study on objective quantification
of electrographic seizures recorded with the device and not on
clinical seizures. It is possible that clinical seizures have unique
relationships to IEA rhythms22, but our findings are consistent
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Fig. 2 Periodograms and peaks of IEA rhythms. a Average periodograms
across all subjects (N = 37) showing ultradian, circadian, and multidien
peaks. For better visualization, unsupervised clustering across all subjects
revealed three patterns: (i) about weekly-to-biweekly rhythm (peaks at 7.5
and 15 days, N = 9), (ii) about tri-weekly rhythm (peak at 20 days, N = 12),
and (iii) about monthly rhythm (peak at 26 days, N = 16). Shading
indicates± 1 SD. b Histograms showing the number of subjects with a peak
in the periodogram at a given period. The distributions are similar (p= 0.87,
χ2-test) in male (N= 22) and female (N= 15) subjects
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Results
From the NeuroVista study,20 we used data from 12 people 
(eight men and four women) who had at least 30 clinical 
seizures, recorded between June 10, 2010, and Aug 22, 
2012. Mean recording duration was 1·4 years (SD 0·5). 
All patients showed a significant oscillation for at least 
one time scale (figure 1). 11 (92%) of 12 patients had 
strong rhythms at 24 h. One person (patient 8) had a 
stronger 12-h cycle than 24-h cycle, showing two peaks in 
seizure probability per day. From the general behaviour 
of the R value, a 24-h cycle should also show a smaller 
peak at 12 h (but no peak at 48 h). More generally, when 
phase alignment for some period occurs, the R value will 
also increase for half that period but would not increase 
at double the period (the phases cancel out). In an ideal 
case, in which seizure times show perfect alignment to a 
given phase, the R value does not decrease at half periods. 
For example, someone who always had a seizure at 
precisely 0800 h would have an R value of 1 at 6 h, 12 h, 
and 24 h. However, any noise (small deviations from 
0800 h) always favours the true cycle—ie, the largest R 
value appears at 24 h. Other multiples of the period do 
not show this effect. For example, a patient who always 
had a seizure sometime on a Monday would show a peak 
R value at 7 days, a slightly smaller peak at 3·5 days, but 
no peak at 24 h.

Patient 8 also had a significant cycle at precisely 1 week. 
Two others (patients 1 and 7) also had approximately 
1-week cycles. Patients 1 and 4 had 2-week cycles. Some 
people (patients 3, 6, 7, and 10) had stronger rhythms at 
time scales longer than 24 h, which suggests that 
circadian regulation was not necessarily the strongest 
modulating factor of epileptic activity.

The SeizureTracker database contained 12 947 patients 
with diverse types of epilepsy and recording durations of 
up to 8 years (median 1·8 years [IQR 0·9–3·8], mean 
2·5 years [SD 2·7]). All data were obtained from self-
reported seizure diaries, extracted from Jan 1, 2007, 
to Oct 19, 2015. After preprocessing of seizure times in the 
SeizureTracker data, people with less than 100 seizures 
were excluded, leaving 1118 patients (500 women, 476 men, 
and 142 sex not recorded). Notably, despite the initially 
large cohort, only 3918 people had more than ten reported 
seizures (1782 had more than 50 seizures). It was necessary 
to set a cutoff for seizure numbers, because the 95th 
percentile of the R values begins to rapidly increase at less 
than about 50–100 seizures (appendix). To ensure a high 
degree of rigour in all statistical tests, a threshold of 
100 seizures was chosen; however, results were qualitatively 
similar for a cutoff of 50 seizures (appendix). Notably, a 
mean of 40% (SD 27) of seizures occurred in a cluster 
(median 37% [IQR 16–61]), and a mean of 19% (20) of lead 
seizures became clusters (median 13% [2–30]). The effect 
of clustering on cycles was assessed separately (appendix).

One patient in the SeizureTracker cohort mostly had 
seizures during the day (between 0800 h and 2000 h; 
figure 2A). Another patient had most seizures on Sundays 

and Fridays (figure 2B). Another patient (figure 2C) had 
no seizures in the final week of each month.

In the SeizureTracker cycles heatmap, dark vertical bands 
are visible at 12 h and 24 h, suggesting that most patients 
show circadian oscillations of their seizure occurrence 
(figure 3; appendix). Repeating cycles with a period of 
1 week was also common, evidenced by the vertical band, 
and small peak in the average phase locking value at 7 days. 
Many patients also showed some evidence of cycles lasting 
up to a month, although no obvious preference for longer 
periods, such as a 28-day cycle, was seen. 

In 45% of the SeizureTracker data, the null hypothesis 
that the seizure phases belonged to a von-Mises (normal) 
distribution was rejected. Hence, the results of the 
Rayleigh test might not be reliable. 

Figure 2: Example R values and histograms for multiday seizure cycles
Circular histograms of seizure times of three patients from the SeizureTracker database. For each histogram, the 
number of seizures is given on the radial axis, with each division representing ten seizures. (A) A patient with a 
daily cycle, seizures most prevalent in the morning. (B) A patient with a weekly cycle, seizures predominately on 
Friday and Sunday. (C) A patient with a monthly cycle, no seizures during 1 week of each 4-week period. 
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representation of the exact p values is in the appendix.
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approaches, such as latent variable models, into seizure
risk evaluation leads to different conclusions about a
patient’s seizure risk level than approaches based only
on observed seizures. The potential for more accurate
seizure risk assessment suggests that hidden Markov
models are a potentially valuable systematic approach to
thinking about seizure occurrence. Higher accuracy of
EpiSAT may result from several factors not currently
considered in day-to-day epilepsy management, including
(1) inclusion of clinical measurement data in predicting
the next seizure risk state, (2) explicit modeling of zero-
inflation, and (3) a Bayesian inferential framework to
provide more accurate estimation due to borrowing of
information across time points as well as patients.

Because physicians generally utilize clinical judgment
rather than a systematic quantitative approach to deter-
mine whether changes in seizure count are due to natural
variability or true changes in underlying seizure risk,
applications of our model to physician trial data are
needed to evaluate whether the simulation results here
extend to actual clinical practice. Given that accuracy of
new statistical models can be assessed only when the
true underlying seizure risk state is known, comparison
to current clinical practice was possible only through
simulations and an operational definition of clinical prac-
tice. Actual clinical decision-making is not systematic,
and therefore it is likely to result in greater variance than
the simulated constructs considered here.
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Figure 3.
Validation study using simulated data: Seizure frequencies from a sample simulated seizure diary (A), along with the estimated underlying
seizure risk states using EpiSAT (B) are shown. In comparison, approaches that estimated seizure risk relying only on observed seizure
frequencies demonstrated significantly poorer performance in correctly identifying changes in underlying seizure risk (C–D). Red = true
underlying seizure risk state; black = estimated underlying seizure risk state. k = (1, 10, 50); p = 0.1; φ = 0.2.
Epilepsia Open ILAE

Epilepsia Open, **(*):1–11, 2018
doi: 10.1002/epi4.12112
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BayesianModel for Epilepsy Natural History

Chiang et al Epilepsia Open 2018
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Example: Seizure forecasting

Goldenholz et al Annals of Neurology 2020

N= 5419
AUC=86%
BSS = 0.27
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What’s next?
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• More data: 

• EHR/Mobile 

• Wearable devices 

• Implants
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• More connected: 

• To entire patient 

• To doctor 

• To other patients like me
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• More AI: 

• Sooner diagnosis 

• Personalized treatment 

• Early warnings

S4 |   STIRLING ET AL.

variable throughout the literature on seizure-prediction algo-
rithms, ranging from 2 minutes in one study18 to 150 minutes 
in another.19 The SOP represents the maximum time within 
which a seizure can occur after a positive prediction (or high-
risk warning) before it is considered a false positive. The 
problem with these inconsistencies is that the SOP time can 
drastically alter algorithm performance. For example, one 
study comparing SOP times on the same algorithm improved 
sensitivity from 19% to 73% simply by increasing the time 
from 2 to 40 minutes, both of which are considered accept-
able SOP choices.18

Furthermore, traditional metrics may not be appropriate 
when evaluating probabilistic forecasts, as many are designed 
for binary predictions where the output is either true (a sei-
zure will occur) or false (a seizure will not occur). Intuitively, 
one can immediately tell if a binary prediction is “right” or 
“wrong.” On the other hand, multiple seizures are required to 
assess the accuracy of a forecast that outputs the probability 
of having a seizure. Hence, the shift to forecasting seizure 
probabilities requires a corresponding shift in performance 
measures that are based on a probabilistic framework.20 
More generally, the performance of any prediction (binary 
classifier or probability) cannot be rigorously evaluated until 
enough seizures are recorded to determine statistical signif-
icance. Although there is no prescribed threshold on the re-
quired number of seizures, many past studies used data with 
fewer than 10 seizures per patient.21 Low seizure numbers 

were considered a leading cause of the inability of many pre-
diction algorithms to generalize to new data.22

The minimum accuracy required for a forecaster to be 
considered clinically useful is another uncertainty in sei-
zure-forecasting requirements and may depend on the in-
tended application. Recent surveys have established that 
people with epilepsy and their caregivers would prefer a 
forecasting device to be accurate at least 90% of the time, 
although this depends on the user.14,23 Some responders 
would use a device that was inaccurate up to 30% of the 
time,14 and others argued that, without 100% accuracy, a 
forecasting device could do more harm.23 Forecasts used 
for medication titration (without overall dose reduction), 
responsive stimulation, scheduling pre-surgical monitor-
ing, or to refine seizure detection devices may not require 
perfect accuracy, as these applications are routinely un-
assisted and could benefit from additional awareness of 
seizure timing without compromising current standard of 
care. On the other hand, forecasts used for prescriptive pur-
poses, such as day-to-day activity modification, tapering 
down medication, or alerting caregivers and people with 
epilepsy about seizure risk, may be detrimental to health 
and safety without a higher degree of accuracy. Due to the 
lack of prospective data from seizure-forecasting devices 
in real-world applications, there are limited resources to 
adequately review these differing requirements. Although 
the aforementioned surveys provide useful information, 

F I G U R E  1  Overview of seizure forecasting. A, Forecasts should combine data from multiple sources including wearable and mobile devices, 
clinical records, and continuous neurophysiology (EEG). B, Measurements should cover diverse, patient-specific triggers including physiological, 
behavioral, and environmental factors. C, Computational methods are used to integrate data sources and output a final probability of seizure 
likelihood. D, User interface requirements for a forecasting device are unclear, including parameters such as forecasting horizon (minutes, hours, 
days) and presentation (score, categorical risk level, and so on)



What is coming next?
• More data: 

• EHR/Mobile 

• Wearable devices 

• Implant
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• More connected: 

• To entire patient 

• To doctor 

• To other patients like me

• More AI: 

• Sooner diagnosis 

• Tailored treatment 

• Early warnings
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Continue the conversation...

Email me: daniel.goldenholz@bidmc.harvard.edu

mailto:daniel.goldenholz@bidmc.harvard.edu

